Abstract

Analysis of Sperm DNA Fragmentation and Aneuploidy in 109 Infertile Patients: Are the Two Parameters Correlated?

Purpose: To evaluate the association between sperm DNA integrity and chromosomes aneuploidies in a considerable population of infertile patients undergoing assisted reproductive treatment (109 male) characterized by both normal and abnormal semen parameters.

Methods: In 109 infertile patients with normal and abnormal semen parameters, the assessments of sperm DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) and chromosome aneuploidy by fluorescence in situ hybridization (FISH) have been performed on the same semen sample. Sperm samples were collected by masturbation into sterile cups after 3-5 days of sexual abstinence, allowed to liquefy for 30 min at room temperature and then divided in two aliquots, one processed by double gradient centrifugation (DGC) and used for TUNEL assay, whereas the remained aliquot was left unprocessed and used for FISH test.

Results: The main results indicate a significant positive correlation between sperm chromosome aneuploidies and DNA integrity in patients with abnormal semen parameters (R=0.516 p=0,000) and negative not significant correlation in patients with normal seminal parameters (R=-0.105, p=0.476).

Conclusions: Assuming the positive correlation between the two biomarkers in patients with defective spermatogenesis, high DNA fragmentation index (DFI) could perhaps be indicator of high chromosome aneuploidies level, thus increasing the risk of generating aneuploid embryos. Therefore, a clinical strategy could probably be to integrate also the preimplantation genetic screening (PGS) in ART treatment plan, in addition to the evaluation of sperm DNA fragmentation and/or sperm chromosome aneuploidy, to avoid transfer of chromosomally abnormal embryos.


Author(s):

Marlea Di Santo, Nicoletta Tarozzi, Marco Nadalini and Andrea Borini



Abstract | Full-Text | PDF

Share this  Facebook  Twitter  LinkedIn  Google+